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ABSTRACT - Reinforcement Learning (RL) has attracted considerable 
interest from both industry and academia recently. The study of RL 
algorithms with provable rates of convergence, however, is still in its 
infancy. In this talk, we discuss some recent progresses on the solutions of 
two fundamental RL problems, i.e., stochastic policy evaluation and policy 
improvement. It is worth noting that both are related to stochastic 
variational inequalities. 

For policy evaluation, prior investigations in the literature focused on 
temporal difference (TD) learning by employing nonsmooth finite time 
analysis motivated by stochastic subgradient descent leading to certain 
limitations. These encompass the requirement of analyzing a modified TD 
algorithm that involves projection to an a-priori defined Euclidean ball, 
achieving a non-optimal convergence rate and no clear way of deriving the 
beneficial effects of parallel implementation. We address all these issues 
by developing novel analysis of TD, and introducing new algorithms, 
including conditional TD algorithm (CTD) and fast TD (FTD) algorithm to 
achieve the best-known so-far convergence rate for policy evaluation. 

For policy improvement, we present new policy mirror descent (PMD) 
methods for solving RL problems with either strongly convex or general 
convex regularizers. By exploring the structural properties of these overall 
seemly highly nonconvex problems, we show that the PMD methods 
exhibit fast linear rate of convergence to the global optimality. We develop 
stochastic counterparts of these methods, and establish an O(1/ε) (resp., 
O(1/ε2)) sampling complexity for solving these RL problems with strongly 
(resp., general) convex regularizers using different sampling schemes (one 
involving CTD), where ε denote the target accuracy. We further show the 
tight complexity for computing the gradients of these regularizers, if 
necessary. To the best of our knowledge, these complexity bounds, along 
with our algorithmic developments, appear to be new in both optimization 
and RL literature. The introduction of convex regularizers also greatly 
expands the flexibility and applicability of RL models. 
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